Package: RRMLRfMC 0.4.0

RRMLRfMC: Reduced-Rank Multinomial Logistic Regression for Markov Chains

Fit the reduced-rank multinomial logistic regression model for Markov chains developed by Wang, Abner, Fardo, Schmitt, Jicha, Eldik and Kryscio (2021)<doi:10.1002/sim.8923> in R. It combines the ideas of multinomial logistic regression in Markov chains and reduced-rank. It is very useful in a study where multi-states model is assumed and each transition among the states is controlled by a series of covariates. The key advantage is to reduce the number of parameters to be estimated. The final coefficients for all the covariates and the p-values for the interested covariates will be reported. The p-values for the whole coefficient matrix can be calculated by two bootstrap methods.

Authors:Pei Wang [aut, cre], Richard Kryscio [aut]

RRMLRfMC_0.4.0.tar.gz
RRMLRfMC_0.4.0.zip(r-4.5)RRMLRfMC_0.4.0.zip(r-4.4)RRMLRfMC_0.4.0.zip(r-4.3)
RRMLRfMC_0.4.0.tgz(r-4.4-any)RRMLRfMC_0.4.0.tgz(r-4.3-any)
RRMLRfMC_0.4.0.tar.gz(r-4.5-noble)RRMLRfMC_0.4.0.tar.gz(r-4.4-noble)
RRMLRfMC_0.4.0.tgz(r-4.4-emscripten)RRMLRfMC_0.4.0.tgz(r-4.3-emscripten)
RRMLRfMC.pdf |RRMLRfMC.html
RRMLRfMC/json (API)

# Install 'RRMLRfMC' in R:
install.packages('RRMLRfMC', repos = c('https://wangp33.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 133 downloads 2 exports 1 dependencies

Last updated 3 years agofrom:15a189ab18. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:rrmultinomsdfun

Dependencies:nnet

Readme and manuals

Help Manual

Help pageTopics
AupdateAupdate
Cognitive Datasetcogdat
derivativeBderivativeB
derivativesderivatives
expandexpand
GupdateGupdate
normnorm
rrmultinomrrmultinom
sdfunsdfun