Package: RRMLRfMC 0.4.0
RRMLRfMC: Reduced-Rank Multinomial Logistic Regression for Markov Chains
Fit the reduced-rank multinomial logistic regression model for Markov chains developed by Wang, Abner, Fardo, Schmitt, Jicha, Eldik and Kryscio (2021)<doi:10.1002/sim.8923> in R. It combines the ideas of multinomial logistic regression in Markov chains and reduced-rank. It is very useful in a study where multi-states model is assumed and each transition among the states is controlled by a series of covariates. The key advantage is to reduce the number of parameters to be estimated. The final coefficients for all the covariates and the p-values for the interested covariates will be reported. The p-values for the whole coefficient matrix can be calculated by two bootstrap methods.
Authors:
RRMLRfMC_0.4.0.tar.gz
RRMLRfMC_0.4.0.zip(r-4.5)RRMLRfMC_0.4.0.zip(r-4.4)RRMLRfMC_0.4.0.zip(r-4.3)
RRMLRfMC_0.4.0.tgz(r-4.4-any)RRMLRfMC_0.4.0.tgz(r-4.3-any)
RRMLRfMC_0.4.0.tar.gz(r-4.5-noble)RRMLRfMC_0.4.0.tar.gz(r-4.4-noble)
RRMLRfMC_0.4.0.tgz(r-4.4-emscripten)RRMLRfMC_0.4.0.tgz(r-4.3-emscripten)
RRMLRfMC.pdf |RRMLRfMC.html✨
RRMLRfMC/json (API)
# Install 'RRMLRfMC' in R: |
install.packages('RRMLRfMC', repos = c('https://wangp33.r-universe.dev', 'https://cloud.r-project.org')) |
- cogdat - Cognitive Dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:15a189ab18. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win | OK | Oct 25 2024 |
R-4.5-linux | OK | Oct 25 2024 |
R-4.4-win | OK | Oct 25 2024 |
R-4.4-mac | OK | Oct 25 2024 |
R-4.3-win | OK | Oct 25 2024 |
R-4.3-mac | OK | Oct 25 2024 |
Exports:rrmultinomsdfun
Dependencies:nnet
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Aupdate | Aupdate |
Cognitive Dataset | cogdat |
derivativeB | derivativeB |
derivatives | derivatives |
expand | expand |
Gupdate | Gupdate |
norm | norm |
rrmultinom | rrmultinom |
sdfun | sdfun |